Welcome....

Bienvenido a esta página, aqui podras encontrar mis táreas de física, asi como imágenes y también videos.. Espero que sea de tu agrado....

miércoles, 16 de noviembre de 2011

Actividad 16 de noviembre de 2011

MECÁNICA CUÁNTICA (FUNCIÓN DE ONDA)


En mecánica cuántica, una función de onda  es una forma de representar el estado físico de un sistema de partículas. Usualmente es una función compleja, de cuadrado integrable y univaluada de las coordenadas espaciales de cada una de las partículas.
El nombre función de onda se refiere a que el concepto fue desarrollado en el marco de la primera física cuántica, donde se interpretaba que las partículas podían ser representadas mediante una onda física que se propaga en el espacio.
Algunos observables posibles sobre un sistema dado son la energía, posición, momento y momento angular. La mecánica cuántica no asigna valores definidos a los observables, sino que hace predicciones sobre sus distribuciones de probabilidad. Las propiedades ondulatorias de la materia son explicadas por la interferencia de las funciones de onda. Estas funciones de onda pueden variar con el transcurso del tiempo. Esta evolución es determinista si sobre el sistema no se realiza ninguna medida aunque esta evolución es estocástica y se produce mediante colapso de la función de onda cuando se realiza una medida sobre el sistema.








HIPÓTESIS DE DE BROGLIE

Basándose en la extraña naturaleza dual de la luz evidenciada porla radiación del cuerpo negro, y del efecto fotoeléctrico,
Louis de Broglie propusó en 1924 que la materia también
debería poseer propiedades tanto ondulatorias como corpusculares.


Tradicionalmente, los electrones se habían considerado como partículas, y por tanto un haz de electrones sería algo claramente distinto de una onda. 
Louis de Broglie propuso en 1923, eliminar esta distinción: un haz de partículas y una onda son esencialmente el mismo fenómeno; simplemente, dependiendo del experimento que realicemos, observaremos un haz de partículas u observaremos una onda. Así, el electrón posee una longitud de onda (que es un parámetro totalmente característico de las ondas).
Esta idea, que en un principio era una simple propuesta teórica, fue confirmada experimentalmente en 1927, cuando se consiguió que haces de electrones experimentasen un fenómeno muy característico de las ondas: la distorsión de la onda al atravesar una rendija muy estrecha (difracción).

De Broglie, asignó a las partículas una onda asociada cuya longitud de onda viene dada por la siguiente expresión:
l = h / mv





miércoles, 9 de noviembre de 2011

Mecánica cuántica y modelo de Bohr

MECÁNICA CUÁNTICA
La mecánica cuántica es la que explica el comportamiento de la materia y de la energía en los niveles cuánticos y atómicos. Su aplicación ha hecho posible el descubrimiento y desarrollo de muchas tecnologías, como por ejemplo los transistores, componentes masivamente utilizados en prácticamente cualquier aparato que tenga alguna parte funcional electrónicaLa mecánica cuántica describe, en su visión más ortodoxa, cómo cualquier sistema físico, y por lo tanto todo el universo, existe en una diversa y variada multiplicidad de estados, los cuales habiendo sido organizados matemáticamente por los físicos, son denominados autoestados de vector y valor propio.





MODELO ATÓMICO DE BOHR

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo clásico del átomo, pero fue el primer modelo atómico en el que se introduce una cuantización a partir de ciertos postulados. Fue propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.


martes, 1 de noviembre de 2011

Equipo # 1 Difracción y teoría cuántica de la luz

Equipo # 5 Teoría cuántica: radiación de un cuerpo negro y el efecto fotoeléctrico

El término radiación se refiere a la emisión continua de energía desde la superficie de cualquier cuerpo, esta energía se denomina radiante y es transportada por las ondas electromagnéticas que viajan en el vacío a la velocidad de 3·108 m/s . Las ondas de radio, las radiaciones infrarrojas, la luz visible, la luz ultravioleta, los rayos X y los rayos gamma, constituyen las distintas regiones del espectro electromagnético.

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
  • Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
  • La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.

Equipo # 4 Masa y Energía relativista

En la ciencia popular, la masa relativista dependiente del observador sigue estando presente, como muestran ciertas ecuaciones de la mecánica no relativística que retienen su forma original (ver más abajo). Además, la famosa ecuación de Einstein E = mc² es cierta para todos los observadores sólo si a m se la considera como masa relativística. Las modificaciones a esta fórmula para poderla usar con la masa invariante se discuten más abajo.
Nótese que la masa relativista y la masa invariante coinciden en algunos sistemas de referencia. Es el caso de los sistemas compuestos con el centro de masas en reposo, como un sólido formado por muchas partículas, un gas o un grupo de partículas en interacción. Las reacciones en este sistema inercial especial no producen cambios en la masa o energía, siempre y cuando el sistema permanezca aislado.